Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The growing interest in soft robotics arises from their unique ability to perform tasks beyond the capabilities of rigid robots, with soft actuators playing a central role in this innovation. Among these, electromagnetic soft actuators (ESAs) stand out for their fast response, simple control mechanisms, and compact design. Analytical and experimental studies indicate that smaller ESAs enhance the force per unit cross-sectional area (F/CSA) without compromising force efficiency. This work uses the magnetic vector potential (MVP) to calculate the magnetic field of an ESA, which is then used to derive the actuator’s generated force. A mixed integer non-linear programming (MINLP) optimization framework is introduced to maximize the ESA’s F/CSA. Unlike prior methods that independently optimized parameters, such as ESA length and permanent magnet diameter, this study jointly optimizes these parameters to achieve a more efficient and effective design. To validate the proposed framework, finite element-based COMSOL 5.4 is used to simulate the magnetic field and generated force, ensuring consistency between MVP-based calculations and the physical model. Additionally, simulation results demonstrate the effectiveness of MINLP optimization in identifying the optimal design parameters for maximizing the F/CSA of the ESA. The data and code are available at GitHub Repository.more » « lessFree, publicly-accessible full text available March 1, 2026
-
null (Ed.)This paper discusses how to optimally design polygonal profiles of Electromagnetic Soft Actuators (ESAs) to be used in a network to achieve maximum output force with minimum energy consumption. The soft actuators work based on operating principle of solenoids but are made of intrinsically soft materials. It was, previously, confirmed that by miniaturizing the size, the amount of output force decreases for a single ESA however, by the ratio of force to volume increases. Therefore, networking small sized ESAs, would increase the output force. Initially, ESAs were made with circular cross-section profiles. However, we prove here that the shape of the cross-section profile can affect the output force. A polygonal shape with fewer sides would result in higher output force for a single ESA. However, with a network of ESAs, another parameter, packing density, plays an important role in the output force. Our optimization results suggest that even though triangular cross-section profiles lead to the highest amount of force for a single ESA, the best choice would be hexagonal shapes when they are networked.more » « less
-
Abstract In recent years, magnetism has gained an enormous amount of interest among researchers for actuating different sizes and types of bio/soft robots, which can be via an electromagnetic‐coil system, or a system of moving permanent magnets. Different actuation strategies are used in robots with magnetic actuation having a number of advantages in possible realization of microscale robots such as bioinspired microrobots, tetherless microrobots, cellular microrobots, or even normal size soft robots such as electromagnetic soft robots and medical robots. This review provides a summary of recent research in magnetically actuated bio/soft robots, discussing fabrication processes and actuation methods together with relevant applications in biomedical area and discusses future prospects of this way of actuation for possible improvements in performance of different types of bio/soft robots.more » « less
An official website of the United States government
